Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__app2(nil, YS) -> mark1(YS)
a__app2(cons2(X, XS), YS) -> cons2(mark1(X), app2(XS, YS))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__zWadr2(nil, YS) -> nil
a__zWadr2(XS, nil) -> nil
a__zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(a__app2(mark1(Y), cons2(mark1(X), nil)), zWadr2(XS, YS))
a__prefix1(L) -> cons2(nil, zWadr2(L, prefix1(L)))
mark1(app2(X1, X2)) -> a__app2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(zWadr2(X1, X2)) -> a__zWadr2(mark1(X1), mark1(X2))
mark1(prefix1(X)) -> a__prefix1(mark1(X))
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__app2(X1, X2) -> app2(X1, X2)
a__from1(X) -> from1(X)
a__zWadr2(X1, X2) -> zWadr2(X1, X2)
a__prefix1(X) -> prefix1(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__app2(nil, YS) -> mark1(YS)
a__app2(cons2(X, XS), YS) -> cons2(mark1(X), app2(XS, YS))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__zWadr2(nil, YS) -> nil
a__zWadr2(XS, nil) -> nil
a__zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(a__app2(mark1(Y), cons2(mark1(X), nil)), zWadr2(XS, YS))
a__prefix1(L) -> cons2(nil, zWadr2(L, prefix1(L)))
mark1(app2(X1, X2)) -> a__app2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(zWadr2(X1, X2)) -> a__zWadr2(mark1(X1), mark1(X2))
mark1(prefix1(X)) -> a__prefix1(mark1(X))
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__app2(X1, X2) -> app2(X1, X2)
a__from1(X) -> from1(X)
a__zWadr2(X1, X2) -> zWadr2(X1, X2)
a__prefix1(X) -> prefix1(X)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(X)
MARK1(app2(X1, X2)) -> A__APP2(mark1(X1), mark1(X2))
MARK1(prefix1(X)) -> MARK1(X)
MARK1(zWadr2(X1, X2)) -> MARK1(X1)
A__APP2(nil, YS) -> MARK1(YS)
MARK1(zWadr2(X1, X2)) -> MARK1(X2)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(Y)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> A__APP2(mark1(Y), cons2(mark1(X), nil))
MARK1(app2(X1, X2)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
MARK1(prefix1(X)) -> A__PREFIX1(mark1(X))
MARK1(zWadr2(X1, X2)) -> A__ZWADR2(mark1(X1), mark1(X2))
MARK1(from1(X)) -> MARK1(X)
A__APP2(cons2(X, XS), YS) -> MARK1(X)
MARK1(from1(X)) -> A__FROM1(mark1(X))
MARK1(cons2(X1, X2)) -> MARK1(X1)
A__FROM1(X) -> MARK1(X)
MARK1(app2(X1, X2)) -> MARK1(X2)

The TRS R consists of the following rules:

a__app2(nil, YS) -> mark1(YS)
a__app2(cons2(X, XS), YS) -> cons2(mark1(X), app2(XS, YS))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__zWadr2(nil, YS) -> nil
a__zWadr2(XS, nil) -> nil
a__zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(a__app2(mark1(Y), cons2(mark1(X), nil)), zWadr2(XS, YS))
a__prefix1(L) -> cons2(nil, zWadr2(L, prefix1(L)))
mark1(app2(X1, X2)) -> a__app2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(zWadr2(X1, X2)) -> a__zWadr2(mark1(X1), mark1(X2))
mark1(prefix1(X)) -> a__prefix1(mark1(X))
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__app2(X1, X2) -> app2(X1, X2)
a__from1(X) -> from1(X)
a__zWadr2(X1, X2) -> zWadr2(X1, X2)
a__prefix1(X) -> prefix1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(X)
MARK1(app2(X1, X2)) -> A__APP2(mark1(X1), mark1(X2))
MARK1(prefix1(X)) -> MARK1(X)
MARK1(zWadr2(X1, X2)) -> MARK1(X1)
A__APP2(nil, YS) -> MARK1(YS)
MARK1(zWadr2(X1, X2)) -> MARK1(X2)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(Y)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> A__APP2(mark1(Y), cons2(mark1(X), nil))
MARK1(app2(X1, X2)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
MARK1(prefix1(X)) -> A__PREFIX1(mark1(X))
MARK1(zWadr2(X1, X2)) -> A__ZWADR2(mark1(X1), mark1(X2))
MARK1(from1(X)) -> MARK1(X)
A__APP2(cons2(X, XS), YS) -> MARK1(X)
MARK1(from1(X)) -> A__FROM1(mark1(X))
MARK1(cons2(X1, X2)) -> MARK1(X1)
A__FROM1(X) -> MARK1(X)
MARK1(app2(X1, X2)) -> MARK1(X2)

The TRS R consists of the following rules:

a__app2(nil, YS) -> mark1(YS)
a__app2(cons2(X, XS), YS) -> cons2(mark1(X), app2(XS, YS))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__zWadr2(nil, YS) -> nil
a__zWadr2(XS, nil) -> nil
a__zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(a__app2(mark1(Y), cons2(mark1(X), nil)), zWadr2(XS, YS))
a__prefix1(L) -> cons2(nil, zWadr2(L, prefix1(L)))
mark1(app2(X1, X2)) -> a__app2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(zWadr2(X1, X2)) -> a__zWadr2(mark1(X1), mark1(X2))
mark1(prefix1(X)) -> a__prefix1(mark1(X))
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__app2(X1, X2) -> app2(X1, X2)
a__from1(X) -> from1(X)
a__zWadr2(X1, X2) -> zWadr2(X1, X2)
a__prefix1(X) -> prefix1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(X)
MARK1(app2(X1, X2)) -> A__APP2(mark1(X1), mark1(X2))
MARK1(zWadr2(X1, X2)) -> MARK1(X1)
MARK1(prefix1(X)) -> MARK1(X)
A__APP2(nil, YS) -> MARK1(YS)
MARK1(zWadr2(X1, X2)) -> MARK1(X2)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(Y)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> A__APP2(mark1(Y), cons2(mark1(X), nil))
MARK1(app2(X1, X2)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
MARK1(zWadr2(X1, X2)) -> A__ZWADR2(mark1(X1), mark1(X2))
MARK1(from1(X)) -> MARK1(X)
MARK1(from1(X)) -> A__FROM1(mark1(X))
A__APP2(cons2(X, XS), YS) -> MARK1(X)
MARK1(cons2(X1, X2)) -> MARK1(X1)
A__FROM1(X) -> MARK1(X)
MARK1(app2(X1, X2)) -> MARK1(X2)

The TRS R consists of the following rules:

a__app2(nil, YS) -> mark1(YS)
a__app2(cons2(X, XS), YS) -> cons2(mark1(X), app2(XS, YS))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__zWadr2(nil, YS) -> nil
a__zWadr2(XS, nil) -> nil
a__zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(a__app2(mark1(Y), cons2(mark1(X), nil)), zWadr2(XS, YS))
a__prefix1(L) -> cons2(nil, zWadr2(L, prefix1(L)))
mark1(app2(X1, X2)) -> a__app2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(zWadr2(X1, X2)) -> a__zWadr2(mark1(X1), mark1(X2))
mark1(prefix1(X)) -> a__prefix1(mark1(X))
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__app2(X1, X2) -> app2(X1, X2)
a__from1(X) -> from1(X)
a__zWadr2(X1, X2) -> zWadr2(X1, X2)
a__prefix1(X) -> prefix1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(X)
MARK1(app2(X1, X2)) -> A__APP2(mark1(X1), mark1(X2))
MARK1(zWadr2(X1, X2)) -> MARK1(X1)
MARK1(prefix1(X)) -> MARK1(X)
MARK1(zWadr2(X1, X2)) -> MARK1(X2)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> MARK1(Y)
A__ZWADR2(cons2(X, XS), cons2(Y, YS)) -> A__APP2(mark1(Y), cons2(mark1(X), nil))
MARK1(app2(X1, X2)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
MARK1(zWadr2(X1, X2)) -> A__ZWADR2(mark1(X1), mark1(X2))
MARK1(from1(X)) -> MARK1(X)
MARK1(from1(X)) -> A__FROM1(mark1(X))
A__APP2(cons2(X, XS), YS) -> MARK1(X)
MARK1(cons2(X1, X2)) -> MARK1(X1)
A__FROM1(X) -> MARK1(X)
MARK1(app2(X1, X2)) -> MARK1(X2)
The remaining pairs can at least be oriented weakly.

A__APP2(nil, YS) -> MARK1(YS)
Used ordering: Polynomial interpretation [21]:

POL(A__APP2(x1, x2)) = 1 + 3·x1 + x2   
POL(A__FROM1(x1)) = 2 + x1   
POL(A__ZWADR2(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(MARK1(x1)) = 1 + x1   
POL(a__app2(x1, x2)) = 3 + 3·x1 + x2   
POL(a__from1(x1)) = 3 + 3·x1   
POL(a__prefix1(x1)) = 3 + x1   
POL(a__zWadr2(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(app2(x1, x2)) = 3 + 3·x1 + x2   
POL(cons2(x1, x2)) = 3 + 2·x1   
POL(from1(x1)) = 3 + 3·x1   
POL(mark1(x1)) = x1   
POL(nil) = 0   
POL(prefix1(x1)) = 3 + x1   
POL(s1(x1)) = 1 + x1   
POL(zWadr2(x1, x2)) = 2 + 2·x1 + 3·x2   

The following usable rules [14] were oriented:

a__prefix1(X) -> prefix1(X)
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(prefix1(X)) -> a__prefix1(mark1(X))
mark1(s1(X)) -> s1(mark1(X))
a__app2(cons2(X, XS), YS) -> cons2(mark1(X), app2(XS, YS))
mark1(nil) -> nil
a__zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(a__app2(mark1(Y), cons2(mark1(X), nil)), zWadr2(XS, YS))
a__zWadr2(X1, X2) -> zWadr2(X1, X2)
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__prefix1(L) -> cons2(nil, zWadr2(L, prefix1(L)))
a__zWadr2(XS, nil) -> nil
a__zWadr2(nil, YS) -> nil
a__from1(X) -> from1(X)
mark1(app2(X1, X2)) -> a__app2(mark1(X1), mark1(X2))
a__app2(nil, YS) -> mark1(YS)
mark1(zWadr2(X1, X2)) -> a__zWadr2(mark1(X1), mark1(X2))
a__app2(X1, X2) -> app2(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__APP2(nil, YS) -> MARK1(YS)

The TRS R consists of the following rules:

a__app2(nil, YS) -> mark1(YS)
a__app2(cons2(X, XS), YS) -> cons2(mark1(X), app2(XS, YS))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__zWadr2(nil, YS) -> nil
a__zWadr2(XS, nil) -> nil
a__zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(a__app2(mark1(Y), cons2(mark1(X), nil)), zWadr2(XS, YS))
a__prefix1(L) -> cons2(nil, zWadr2(L, prefix1(L)))
mark1(app2(X1, X2)) -> a__app2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(zWadr2(X1, X2)) -> a__zWadr2(mark1(X1), mark1(X2))
mark1(prefix1(X)) -> a__prefix1(mark1(X))
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__app2(X1, X2) -> app2(X1, X2)
a__from1(X) -> from1(X)
a__zWadr2(X1, X2) -> zWadr2(X1, X2)
a__prefix1(X) -> prefix1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.